
Making ML 
Practical 
with Snorkel
Braden Hancock
Co-Founder & Head of Technology
@SnorkelAI / @bradenjhancock



Snorkel 

“Assume a spherical cow…”
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Joke credit: https://en.wikipedia.org/wiki/spherical_cow

https://en.wikipedia.org/wiki/spherical_cow


Impractical ML 
assumptions 
are being made 
every day
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Outline
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• Impractical ML assumptions are being made every day

• 3 Impractical Assumptions

• Snorkel OSS was created to make ML practical again

• How it Works

• Does it Work?

• 4 Lessons Learned

• Snorkel Flow is a platform for building AI applications, powered by Snorkel technology

• 4 Guiding Principles
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“Assume a large, high-quality, 
task-specific training dataset...”
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ASSUMPTION #1:
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ML in Industry
• Create a dataset

What training set do I need?
How should I collect it?
How large does it need to be? 
Who is allowed to see this data?
Do I have enough time/budget for this?

• Train a model
• Refine dataset

Are these labels accurate enough? 
How should I resolve labeler disagreements?
What was annotator 42 thinking!?

• Train a model
• Refine dataset

…

• Download the dataset
• Train a model
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ML in Academia
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Karpathy (2018)
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“Assume an infinite pool of 
qualified annotators…”
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ASSUMPTION #2:
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Who has the expertise to label 
these chest X-rays?*

Expertise Limited
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*Based on a real-world deployment of Snorkel
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Who should be allowed to read 
these personal emails?*

Privacy Limited
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*Based on a real-world deployment of Snorkel
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Who can turn around new labels 
fast enough for us to react to 
new failure modes?*

Latency Limited
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*Based on a real-world deployment of Snorkel
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“Assume a static test 
distribution…”
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ASSUMPTION #3:
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Training labels have a shelf-life 
before they’re no longer relevant

Semantic drift
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“As of Jan. 1, 2021, violations of the 
terms of service will include…”

Evolving Needs
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Downstream usage now 
requires finer label granularity

Changing Schemas
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Snorkel OSS was 
created to make ML
practical again 
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What is Snorkel?
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QUESTION 1:
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The Snorkel OSS Project
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www.snorkel.orgwww.snorkel.ai 

4+ year research project at the Stanford AI Lab resulting in 
35+ peer-reviewed publications and many production deployments

http://www.snorkel.org/
https://www.snorkel.ai/
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Without Snorkel

ML is blocked on collecting training data manually

TRAINING 
DATA
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With Snorkel

Key idea: label, build, and manage training data programmatically

TRAINING 
DATA
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What does programmatic 
supervision look like?
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[Ratner et. al. NeurIPS’16; Ratner et. al. VLDB’18; etc.]

Labeling Functions (LFs) are black-box functions that output weak labels
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Where do Labeling 
Functions come from?
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Pattern Matching

Boolean Search

DB Lookup

Heuristics

Legacy System

Third Party Model

Crowd Labels

If a phrase like “send money” is in email

If unknown_sender AND foreign_source

If sender is in our Blacklist.db

If SpellChecker finds 3+ spelling errors

If LegacySystem votes spam

If TweetSpamDetector votes spam

If Worker #23 votes spam

(.*)
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Making weak labels strong
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“If it says “credit” in 
the title…”

“If it matches a list of 
financial terms…”

“If our legacy system thinks 
it’s a credit agreement…”

[Ratner et. al. NeurIPS’16; Bach et. al. ICML’17; Ratner et. al. AAAI’19; 
Varma et. al. ICML’19l; Sala et. al. NeurIPS’19; Fu et. al. ICML’20]

Provably consistent matrix completion-style 
algorithm over inverse covariance

Look at agreements & disagreements

[Intuition]

Snorkel learns how to combine your noisy LFs in an unsupervised way 
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Train a discriminative model
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[Ratner et. al. NeurIPS’16; Bach et. al. ICML’17; Ratner et. al. AAAI’19; 
Varma et. al. ICML’19l; Sala et. al. NeurIPS’19; Fu et. al. ICML’20]

Use your programmatically generated training set to train a model
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Input: Rules, Output: Model
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[Ratner et. al. NeurIPS’16; Bach et. al. ICML’17; Ratner et. al. AAAI’19; 
Varma et. al. ICML’19l; Sala et. al. NeurIPS’19; Fu et. al. ICML’20]

Generalize to new examples not covered by your LFs

Predictions from LFs Alone

High Precision, Limited Coverage

Predictions from Model 
Trained on those LFs

Similar Precision, 100% Coverage
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Does it work?
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QUESTION 2:
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Industry Adoption
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www.snorkel.orgwww.snorkel.ai 

http://www.snorkel.org/
https://www.snorkel.ai/
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GLUE
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Academic Leaderboards

SuperGLUE

20 March 2019 18 June 2019

https://gluebenchmark.com/ https://super.gluebenchmark.com/
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Case Studies
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What did we learn?
(aka The Four “I”s)
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QUESTION 3:
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Interfaces
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• Jupyter notebooks can’t do everything

• Common LF types can be templatized

• Heavy 3rd party resources can be cached

• Standard analyses can be made push-button

• User experience can be improved with a GUI

A standalone Python package is ultimately limited in what it can do
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Infrastructure
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• Parallelization

• Logging

• User Profiles

• Integrations

• Dependencies

Software that enterprises depend upon needs enterprise-level support

• Encryption

• Scalability

• Data Formats

• Versioning

• Etc.
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Interactions
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• SME: labels, tags, comments

• DS: program, debug, connect

• Developer: API, SDK, CLI

• Business: dashboards, metrics, samples

Different user profiles require different views & interaction points



Snorkel 

Intuition
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A new interface to ML comes with new best practices, tips, and tricks

• How many LFs is enough?

• What LF should I write next?

• Should I focus on precision or recall?

• How do I address bias?

• Will more data help me?

• Is my model or my supervision lacking?



Snorkel Flow is a 
platform for building AI 

applications
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Powered by Snorkel technology
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Snorkel Flow:
The Radical New Way to Build AI 

Applications

LABEL & BUILD INTEGRATE & MANAGE TRAIN & DEPLOY ANALYZE & MONITOR1 2 3 4

Snorkel Flow enables a faster, more practical, adaptive ML development process
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4 Guiding 
Principles behind 

Snorkel Flow
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Applications > Models

Real-world applications chain preprocessors, models, and control logic

PREPROCESSORS POST-PROCESSORS & 
BUSINESS LOGIC
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High & Low

High-level where you want it, low-level where you need it
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Collaborative Hub

Support the whole team responsible for driving ML success in an org

Developer

Business Managers

Data Scientist

Subject Matter Expert
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Iteration Wins

Drive up performance with systematic, iterative, integrated guidance
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https://snorkel.ai/demo
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Request a Demo

Or email at info@snorkel.ai



Talk to us on Twitter!

@SnorkelAI



Thank You


