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“Assume a spherical cow...”

Joke credit: https://en.wikipedia.org/wiki/spherical cow

Snorkel


https://en.wikipedia.org/wiki/spherical_cow

ML
assumptions
are being made
every day
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Outline

® Impractical ML assumptions are being made every day
® 3 Impractical Assumptions

® Snorkel OSS was created to make ML practical again

® How it Works

® Does it Work?

® 4| essons Learned

® Snorkel Flow is a platform for building Al applications, powered by Snorkel technology

® 4 Guiding Principles

Snorkel
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ASSUMPTION #1:

“Assume a large, high-quality,
task-specific training dataset...”
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ML In Academia

®* Download the dataset

® Train a model

ML In Industry

®* Create a dataset

What training set do | need?
How should | collect it”

How large does it need to be?
Who is allowed to see this data”

Do | have enough time/budget for this?
® Train a model
® Refine dataset

Are these labels accurate enough?
How should | resolve labeler disagreements?

What was annotator 42 thinking!?

® Train a model

®* Refine dataset
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PhD

Amount of lost sleep over...

B datasets
I models and algorithms

Tesla

B catasets

Bl models and algorithms

Karpathy (2018)
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ASSUMPTION #2:

“Assume an infinite pool of
qualified annotators...”



0O, OPEN CORE 9

MMMMMM

Expertise Limited

Who has the expertise to label
these chest X-rays?*

Snorkel *Based on a real-world deployment of Snorkel
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Funny Dog Picture

Julia Fillory

Funny Dog Picture

L L [
Here is a hilarous picture of a dog in a blanket. Thought you might ke it! P r I V a C y I I m I t e d

Julia Fillory

Author/lllustrator
(555) 628-1829

Who should be allowed to read
these personal emails?*
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*Based on a real-world deployment of Snorkel

Snorkel
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Latency Limited
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Ty e new failure modes?*

*Based on a real-world deployment of Snorkel

Snorkel



SSSSSSS

ASSUMPTION #3:

“Assume a static test
distribution...”
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Semantic drift

Training labels have a shelf-life
before they’re no longer relevant

13
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Snorkel

U

Evolving Needs

“As of Jan. 1, 2021, violations of the
terms of service will include...”

14
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Changing Schemas

Downstream usage now
requires finer label granularity

15
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Snorkel OSS was
created to make ML
again
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QUESTION 1:

What is Snorkel?



O, OPEN CORE

Snorkel

MMMMMM

4.1K

687

Google

3 YouTube

teradata.

m National Institutes of Health
Turreng Dtscovary ndo Meathy

NEC

NIHY

>
accenture

VA LS. Department
of Veterans Affairs

HITACHI

www.snorkel.al

.|l|l

N

AMERICAN FAMILY

facebook

&
%é‘.ﬁlum

WWW.snorkel.org

The Snorkel OSS Project

Linked T

BT Microsoft

TOSHIBA

OARPA

4+ year research project at the Stanford Al Lab resulting in
35+ peer-reviewed publications and many production deployments

O-BASF

We create chemistry

Chegg

vmware

GORDON AND BETTY

FOUNDATION
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http://www.snorkel.org/
https://www.snorkel.ai/
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Without Snorkel
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ML is blocked on collecting training data manually

Snorkel



O, OPEN CORE

MMMMMM

Snorkel

With Snorkel
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Key idea: label, build, and manage training data programmatically

20
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What does programmatic
supervision look like?

def LF credit in title(Xx):

V

return “Credit Agreement”
else:
return None

Labeling Functions (LFs) are black-box functions that output weak labels

1f “credit” 1in get title(x.text):

21

[Ratner et. al. NeurlPS’16; Ratner et. al. VLDB’18; etc.]
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Where do Labeling
Functions come from?

@ Pattern Matching

% Boolean Search
% DB Lookup
Heuristics
% Legacy System

Third Party Model

@ Crowd Labels

If a phrase like “send money” is in email
If AND

If sender is in our

If SpellChecker finds 3+ spelling errors
If LegacySystem votes spam

If TweetSpamDetector votes spam

If Worker #23 votes spam

22
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Making weak labels strong

“If it says “credit” in \ [Intmtlon]
the title. " 4 Look at agreements & disagreements
“If it matches a list of \ \ G ﬂ
. . 7 7
financial terms...”
SNo=2+ 22"

“If our legacy system thinks

JoLY S > Provably consistent matrix completion-style

It's a credit agreement...”

algorithm over inverse covariance

Snorkel learns how to combine your noisy LFs in an unsupervised way

[Ratner et. al. NeurlPS’16; Bach et. al. ICML’17; Ratner et. al. AAAI'19;

Snorkel Varma et. al. ICML’19l; Sala et. al. NeurlPS’19; Fu et. al. ICML’20]

23
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Train a discriminative model

'Eewm

dml
)FGCBOOS 5 f l r

V

v Transformers PYTORCH

Use your programmatically generated training set to train a model

[Ratner et. al. NeurlPS’16; Bach et. al. ICML’17; Ratner et. al. AAAI'19;
Varma et. al. ICML’19l; Sala et. al. NeurlPS’19; Fu et. al. ICML’20]

24
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Input: Rules, Output: Model

Predictions from LFs Alone

Predictions from Model
Trained on those LFs

High Precision, Limited Coverage

A4

Similar Precision, 100% Coverage

Generalize to new examples not covered by your LFs

[Ratner et. al. NeurlPS’16; Bach et. al. ICML’17; Ratner et. al. AAAI'19;
Varma et. al. ICML’19l; Sala et. al. NeurlPS’19; Fu et. al. ICML’20]
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QUESTION 2:

Does it work?
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Fast
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Time

Snorkel

Expensive

$10 - $100/hr

Cheap

aW

$0.10/hr

Static

{Positive, Negative}

J

{Positive, Neutral, Negative}

Relabeling = Starting Over

Dynamic

easy

Push-button relabeling

Exposed

Shared with Crowdworkers

Private

6

VAN

Shared with Nobody

27
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Industry Adoption
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http://www.snorkel.org/
https://www.snorkel.ai/
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Academic Leaderboards

GLUE

SuperGLUE

Rank Name Model URL Score
1 SuperGLUE Human Baselines SuperGLUE Human Baselines C};. 89.6

2 Stanford Hazy Research Snorkel Metal C/' 74.5

3  SuperGLUE Baselines BERT++ C};' 70.5
BERT & 68.0

CcBOW 48.6

Most Frequent Class 46.9

Outside Best 24 .

1 GLUE Human Baselines GLUE Human Baselines [Z' 87.1
+ 2 Stanford Hazy Research Snorkel MeTalL C},. 83.2
- 3 IH ALICE large (Alibaba DAMO NLP) 83.1
== 4  Microsoft D365 Al & MSR Al MT-DNNv2 (BigBird) [:);' 83.1
5  Anonymous Anonymous BERT + BAM C’,' 82.3
¢ 6 Jason Phang BERT on STILTs & 82.0
+ 7  Jacob Devlin BERT: 24-layers, 16-heads, 1024-hidden C};l 80.5
8  Neil Houlsby BERT + Single-task Adapters & 80.2
9 Alec Radford Singletask Pretrain Transformer C’;‘ 72.8
10 GLUE Baselines BILSTM+ELMo+Attn & 70.0

20 March 2019

https://gluebenchmark.com/

Snorkel

18 June 2019

https://super.gluebenchmark.com/

29
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Google

Content
Classification

100K+

Hand labels replaced

52%

Improvement by
repurposing resources

6M+

Labels in < 30 min.

Case Studies

Social Media
Monitoring

6

Crowdworker-months
labels replaced

+18.5

Precision percentage points

+28.5

Coverage percentage points

Medical Image
Labeling

8

Person-months of labeling
replaced

94%

ROC AUC Performance

50K+

Images labeled in minutes

Top-3 US Bank

Contact
Intelligence

1

Month of labeling effort
in <24 hours

99.1%

Snorkel Flow Accuracy

> 250K

# Documents processed

30
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QUESTION 3:

What did we learn?
(aka The Four “I”s)
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Interfaces

Jupyter notebooks can’t do everything
Common LF types can be templatized
Heavy 3 party resources can be cached
Standard analyses can be made push-button E—

User experience can be improved with a GUI

A standalone Python package is ultimately limited in what it can do

32
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Infrastructure

Parallelization ® Encryption
Logqging ® Scalability
User Profiles ® Data Formats
Integrations ® Versioning
Dependencies ® Etc.

Software that enterprises depend upon needs enterprise-level support

33
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Interactions

SME: labels, tags, comments
DS: program, debug, connect

Developer: API, SDK, CLI

Business: dashboards, metrics, samples

Different user profiles require different views & interaction points

34
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Intuition

How many LFs is enough?

What LF should | write next?

IIO

Should | focus on precision or recall?
How do | address bias?

Will more data help me?

Is my model or my supervision lacking?

A new interface to ML comes with new best practices, tips, and tricks

35
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IS a
platform for building Al

applications
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Snorkel Flow:
The Radical New Way to Build Al
Applications

. LABEL & BUILD

a INTEGRATE & MANAGE n TRAIN & DEPLOY

' ANALYZE & MONITOR

=
=),

Snorkel Flow enables a faster, more practical, adaptive ML development process



OOOOOOOOO

MMMMMM

Principles behind
Snorkel Flow

SSSSSSS
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Candidate Extractor

Applications > Models

Model 1

N\

{text: “..."}

PREPROCESSORS

Real-world applications chain preprocessors, models, and control logic

WV

00O
OCO00O

Model 2a

Filter

QOO
OO00O0O

A4

{y}

Routing Logic

Model 2b

00O
0000

N\

{text: “..."}

POST-PROCESSORS &
BUSINESS LOGIC

39
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High & Low

Task progress

Labeling Function Builder

If HEADER

€
L
0

v CONTAINS v

Keyword [ employment

Then label EMPLOYMENT

,

CEDIE

v 00
>
Notebook
In[ ] : from studio.bindings import StudioTask
task - StudioTask()
In( 1 : from snorkel.labeling.Llf import Labeling_function

tion(name="my_Lf")
def Lf_contract_amount(x):
if x.contract_amount 3
return “SERVICES”

project.register(Lf)

High-level where you want it, low-level where you need it

40
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Snorkel

Subject Matter Expert

Collaborative Hub

Business Managers

N

]

Data Scientist

Support the whole team responsible for driving ML success in an org

o

Developer

41
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Ilteration Wins

Empirical Label Distribution

Expected

LF
Mc¢
@ o
Show/hi
N\
\ Loan
\ .
35 errors
\\ Click to imprO@
_

154 correct

Model successfully
generalizing

Drive up performance with systematic, iterative, integrated guidance

42
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Request a Demo

https://snorkel.ai/demo

Or email at info@snorkel.ai



Talk to us on Twitter!

@SnorkelAl
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Thank You




