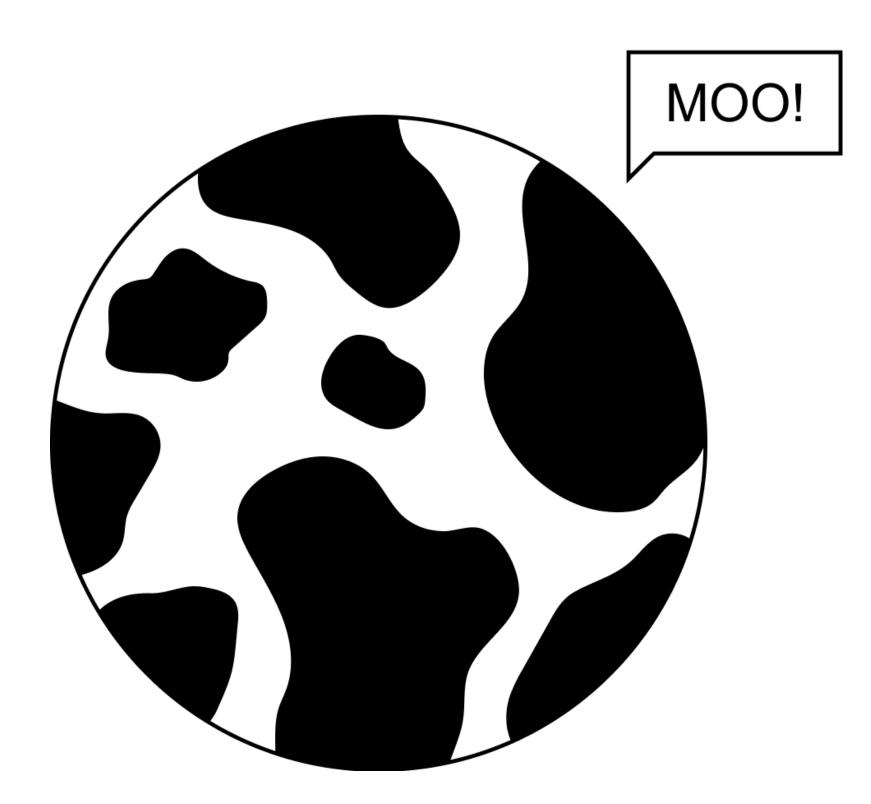


Making ML Practical with Snorkel

Braden Hancock Co-Founder & Head of Technology @SnorkelAl / @bradenjhancock

"Assume a spherical cow..."



Joke credit: <u>https://en.wikipedia.org/wiki/spherical_cow</u>

Snorkel

Impractical M assumptions are being made every day

- Impractical ML assumptions are being made every day
 - 3 Impractical Assumptions
- Snorkel OSS was created to make ML practical again
 - How it Works
 - Does it Work?
 - 4 Lessons Learned
- Snorkel Flow is a platform for building AI applications, powered by Snorkel technology
 - 4 Guiding Principles

Outline

ASSUMPTION #1:

"Assume a large, high-quality, task-specific training dataset..."

ML in Academia

- Download the dataset
- Train a model

ML in Industry

• Create a dataset

What training set do I need?

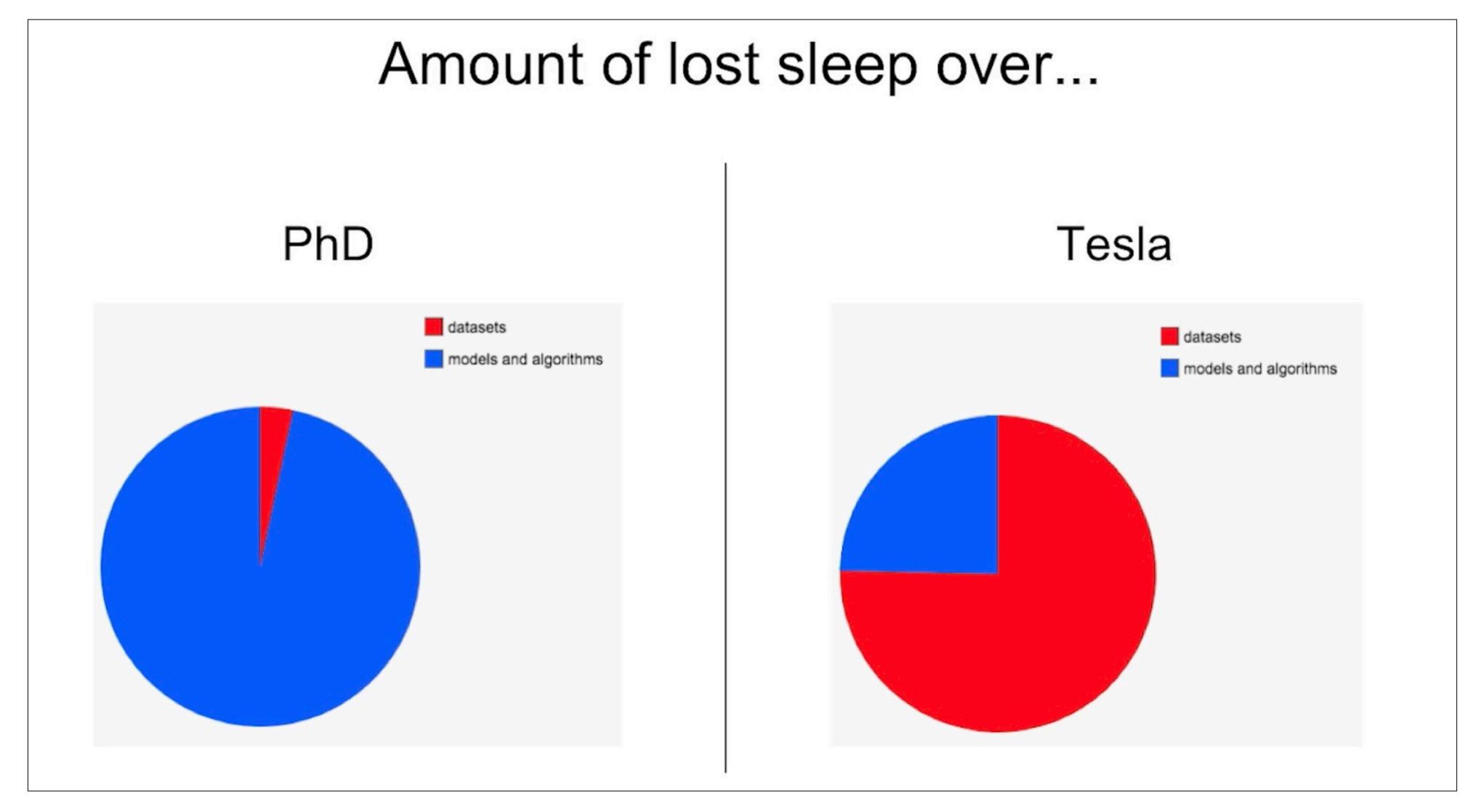
- How should I collect it?
- How large does it need to be?
- Who is allowed to see this data?
- Do I have enough time/budget for this?
- Train a model

• Refine dataset

Are these labels accurate enough? How should I resolve labeler disagreements? What was annotator 42 thinking!?

- Train a model
- Refine dataset

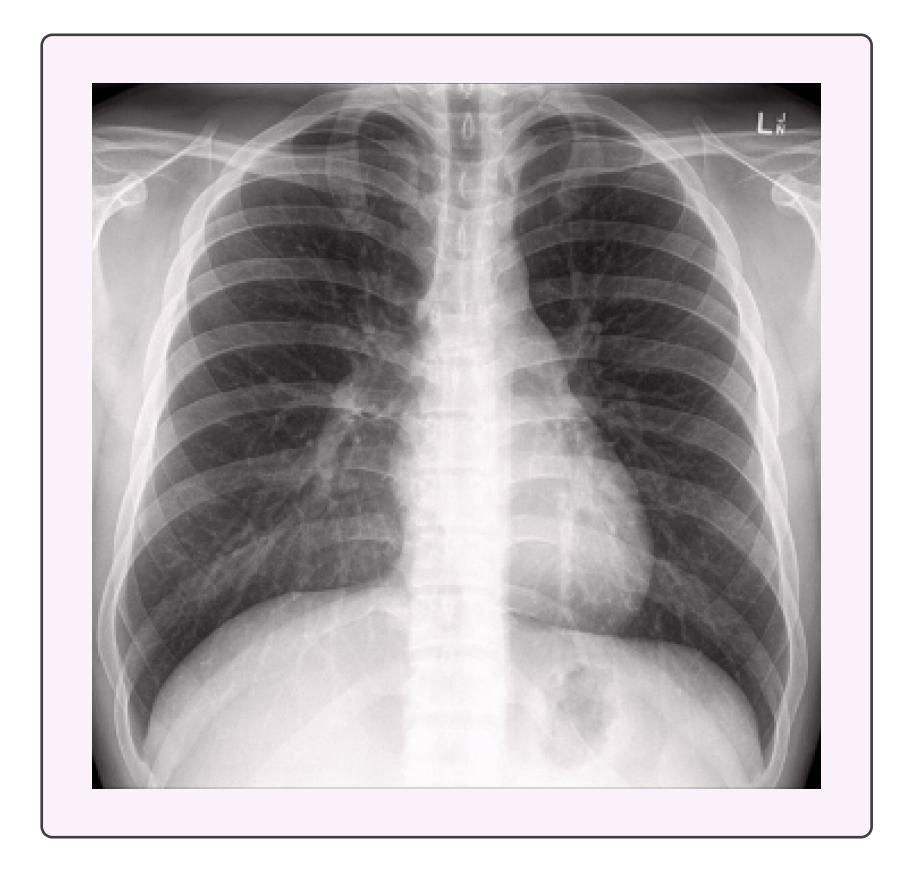
. . .



Karpathy (2018)

"Assume an infinite pool of qualified annotators..."

ASSUMPTION #2:



Expertise Limited

Who has the expertise to label these chest X-rays?*

*Based on a real-world deployment of Snorkel

	Julia Fillory							
Julia Fillory Author/Illustrator	Funny Dog F	licture						
Julia Fillory Author/Illustrator	Here is a hila	rious picture	of a dog in a	i blanket. T	hought yo	u might	like it!	
Pug.png (8,116K) ×	D	,116K)						×
Sans Serif ▼ T ▼ B I <u>U</u> <u>A</u> ▼ E ▼ i ≡ i ≡ i ≡ ·	Pug.png (a				_	1-		

Privacy Limited

Who should be allowed to read these personal emails?*

*Based on a real-world deployment of Snorkel

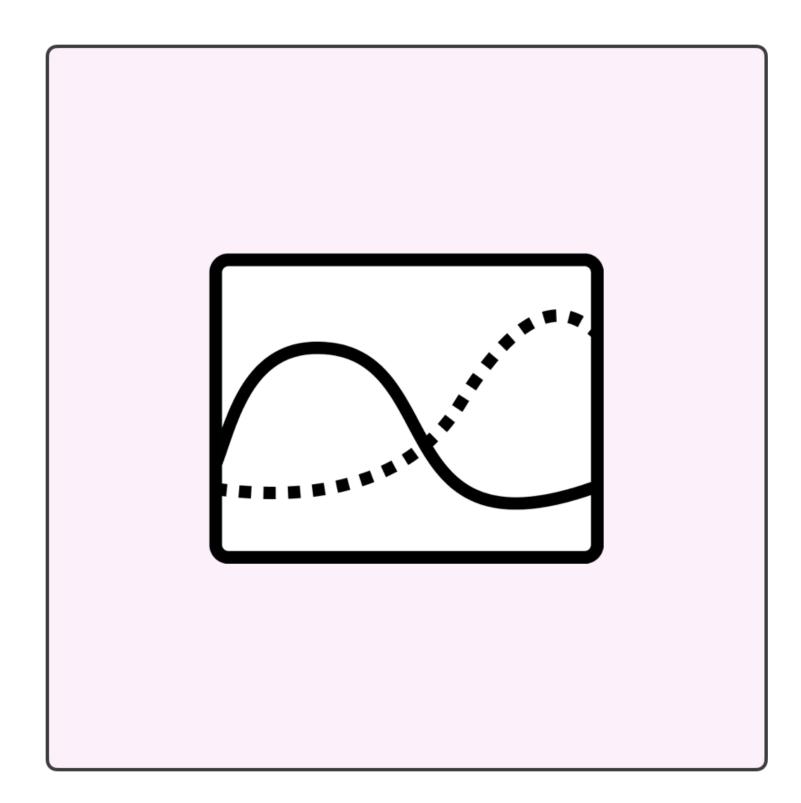
Latency Limited

Who can turn around new labels fast enough for us to react to new failure modes?*

*Based on a real-world deployment of Snorkel

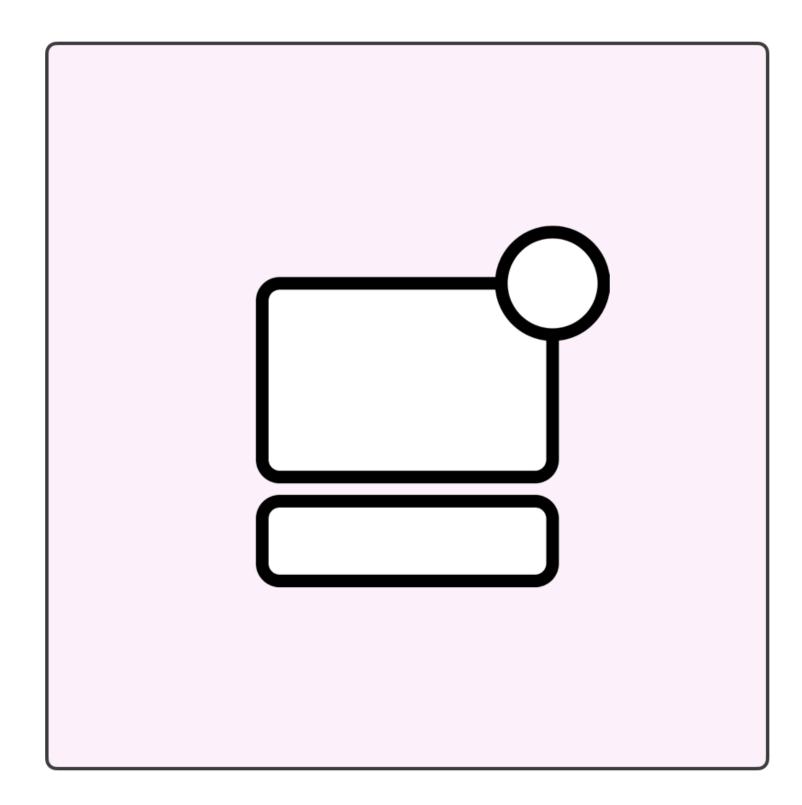
"Assume a static test distribution..."

ASSUMPTION #3:



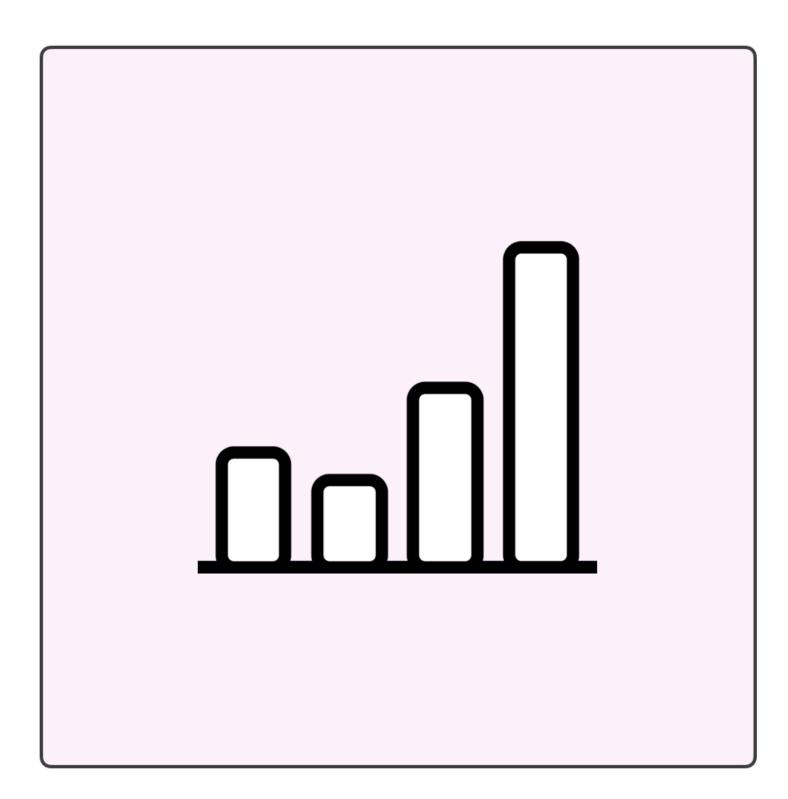
Semantic drift

Training labels have a shelf-life before they're no longer relevant



Evolving Needs

"As of Jan. 1, 2021, violations of the terms of service will include..."



Changing Schemas

Downstream usage now requires finer label granularity

Snorkel OSS was created to make ML practical again

What is Snorkel?

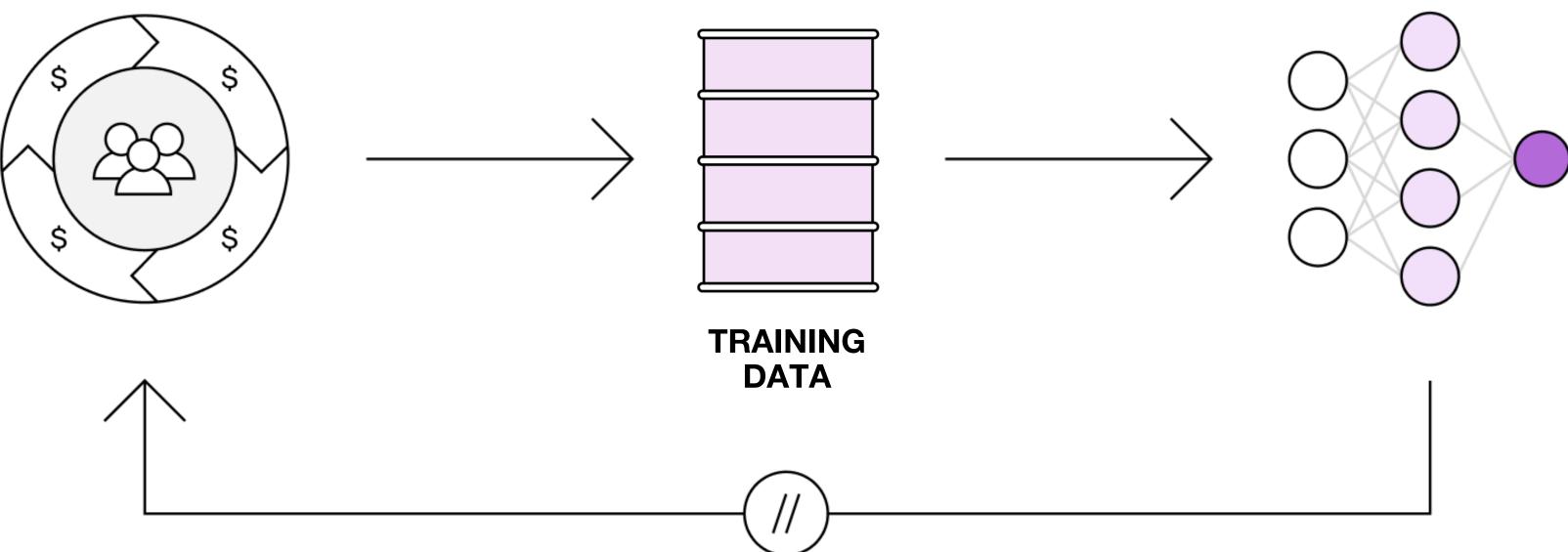
QUESTION 1:

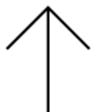
The Snorkel OSS Project

www.snorkel.ai www.snorkel.org

4+ year research project at the Stanford AI Lab resulting in 35+ peer-reviewed publications and many production deployments

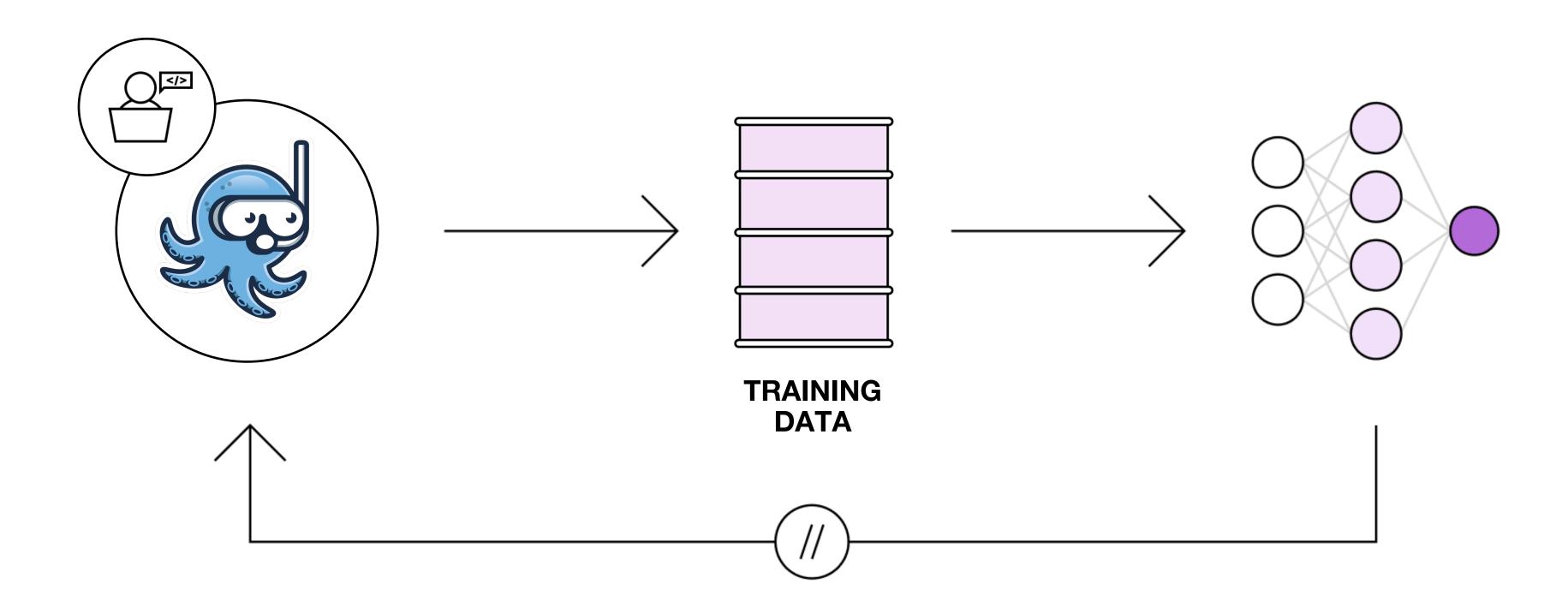
Without Snorkel





Snorkel

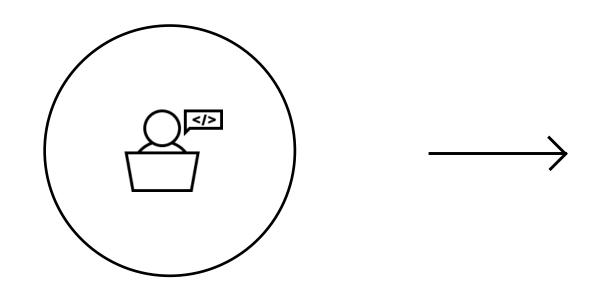
ML is blocked on collecting training data manually



With Snorkel

Key idea: label, build, and manage training data programmatically

What does programmatic supervision look like?

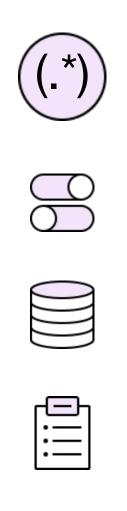


Labeling Functions (LFs) are **black-box functions** that output weak labels

Snorkel

def LF_credit_in_title(x): if "credit" in get title(x.text): return "Credit Agreement" else: return None

Where do Labeling Functions come from?

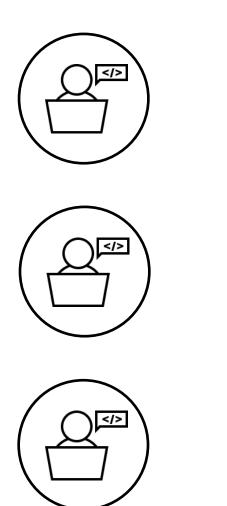


Б	

Pattern Matching	lf a
Boolean Search	lf <mark>ر</mark>
DB Lookup	lf s
Heuristics	lf <mark>S</mark>
Legacy System	lf L
Third Party Model	lf T
Crowd Labels	lf V

- a phrase like <mark>"send money</mark>" is in email
- unknown_sender AND foreign_source
- sender is in our Blacklist.db
- SpellChecker finds 3+ spelling errors
- LegacySystem votes spam
- TweetSpamDetector votes spam
- If Worker #23 votes spam

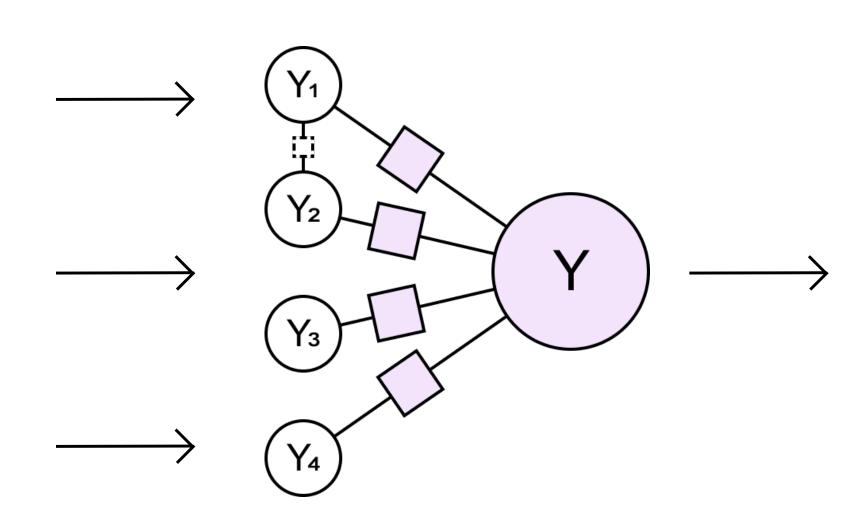
Making weak labels strong



"If it says "credit" in the title..."

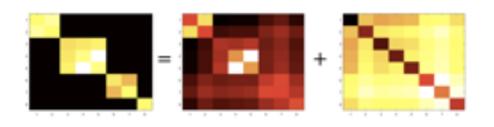
"If it matches a list of financial terms..."

"If our legacy system thinks it's a credit agreement..."



[Intuition]

Look at agreements & disagreements

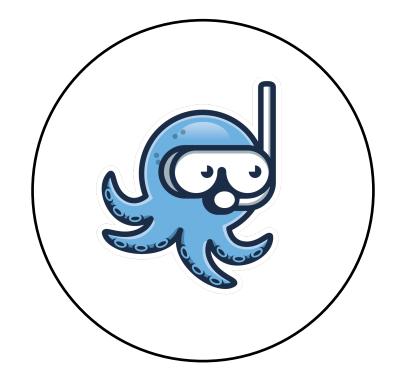


 $(\Sigma^{-1})_0 = \Sigma_0^{-1} + ZZ^T$

Provably consistent matrix completion-style algorithm over inverse covariance

Snorkel learns how to combine your noisy LFs in an unsupervised way

Train a discriminative model

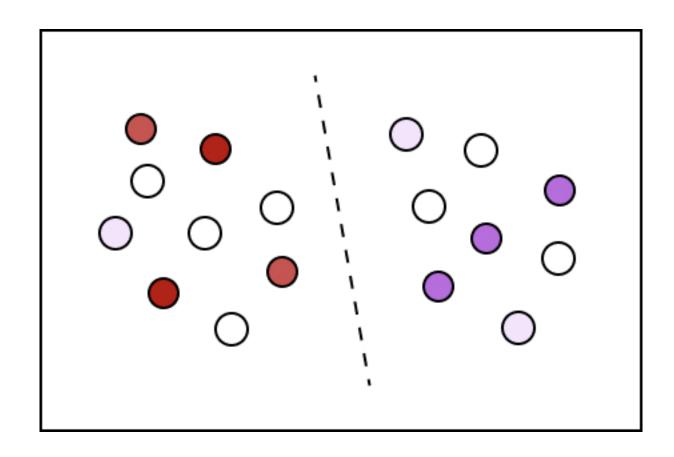


Use your programmatically generated training set to train a model

[Ratner et. al. NeurIPS'16; Bach et. al. ICML'17; Ratner et. al. AAAI'19; Varma et. al. ICML'19I; Sala et. al. NeurIPS'19; Fu et. al. ICML'20]

Input: Rules, Output: Model

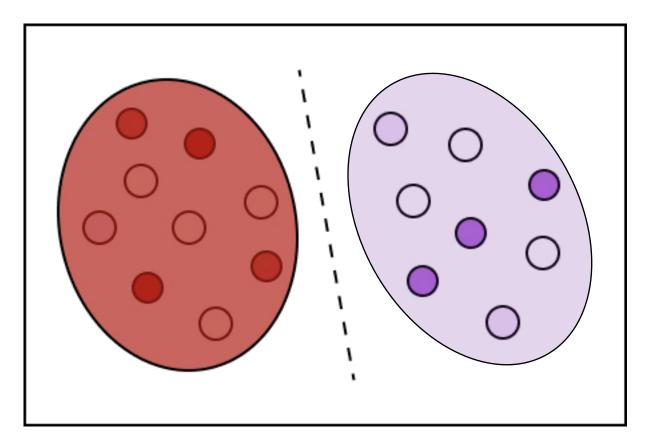
Predictions from LFs Alone



High Precision, Limited Coverage

Generalize to new examples not covered by your LFs

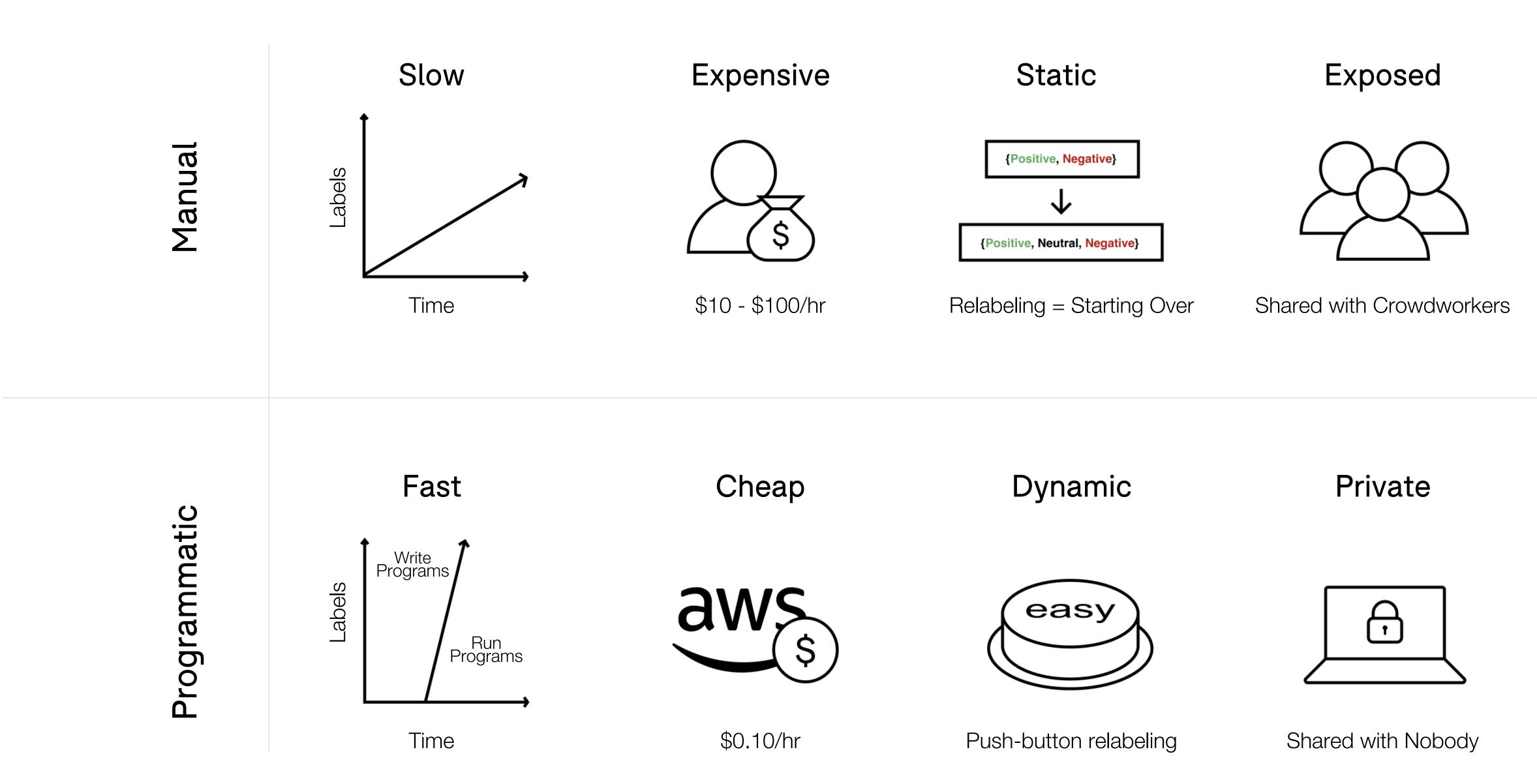
Predictions from Model Trained on those LFs



Similar Precision, 100% Coverage

QUESTION 2:

Does it work?



Industry Adoption

☆ Star	4.1K
ဗို Fork	687

el.ai <u>www.snorkel.org</u>

GLUE

	Rank	Name	Model	URL	Score
	1	GLUE Human Baselines	GLUE Human Baselines		87.1
t	2	Stanford Hazy Research	Snorkel MeTaL		83.2
ł	3	王玮	ALICE large (Alibaba DAMO NLP)		83.1
t	4	Microsoft D365 AI & MSR AI	MT-DNNv2 (BigBird)		83.1
	5	Anonymous Anonymous	BERT + BAM		82.3
ł	6	Jason Phang	BERT on STILTs		82.0
ł	7	Jacob Devlin	BERT: 24-layers, 16-heads, 1024-hidden		80.5
	8	Neil Houlsby	BERT + Single-task Adapters		80.2
	9	Alec Radford	Singletask Pretrain Transformer		72.8
	10	GLUE Baselines	BiLSTM+ELMo+Attn		70.0

20 March 2019

https://gluebenchmark.com/

Academic Leaderboards

SuperGLUE

Rank	Name	Model	URL	Scor
1	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89
2	Stanford Hazy Research	Snorkel Metal		74
3	SuperGLUE Baselines	BERT++		70
		BERT		68
		CBOW		48
		Most Frequent Class		46
		Outside Best		

18 June 2019

https://super.gluebenchmark.com/

	Case
Google	intel
Content Classification	Social Media Monitoring
100K+ Hand labels replaced	6 Crowdworker-months labels replaced
52% Improvement by repurposing resources	+18.5 Precision percentage points
6M+ Labels in < 30 min.	+28.5 Coverage percentage points

Case Studies

Medical Image Labeling

8 Person-months of labeling

replaced

94%

ROC AUC Performance

50K+

Images labeled in minutes

Top-3 US Bank

Contact Intelligence

I Month of labeling effort in <24 hours

99.1% Snorkel Flow Accuracy

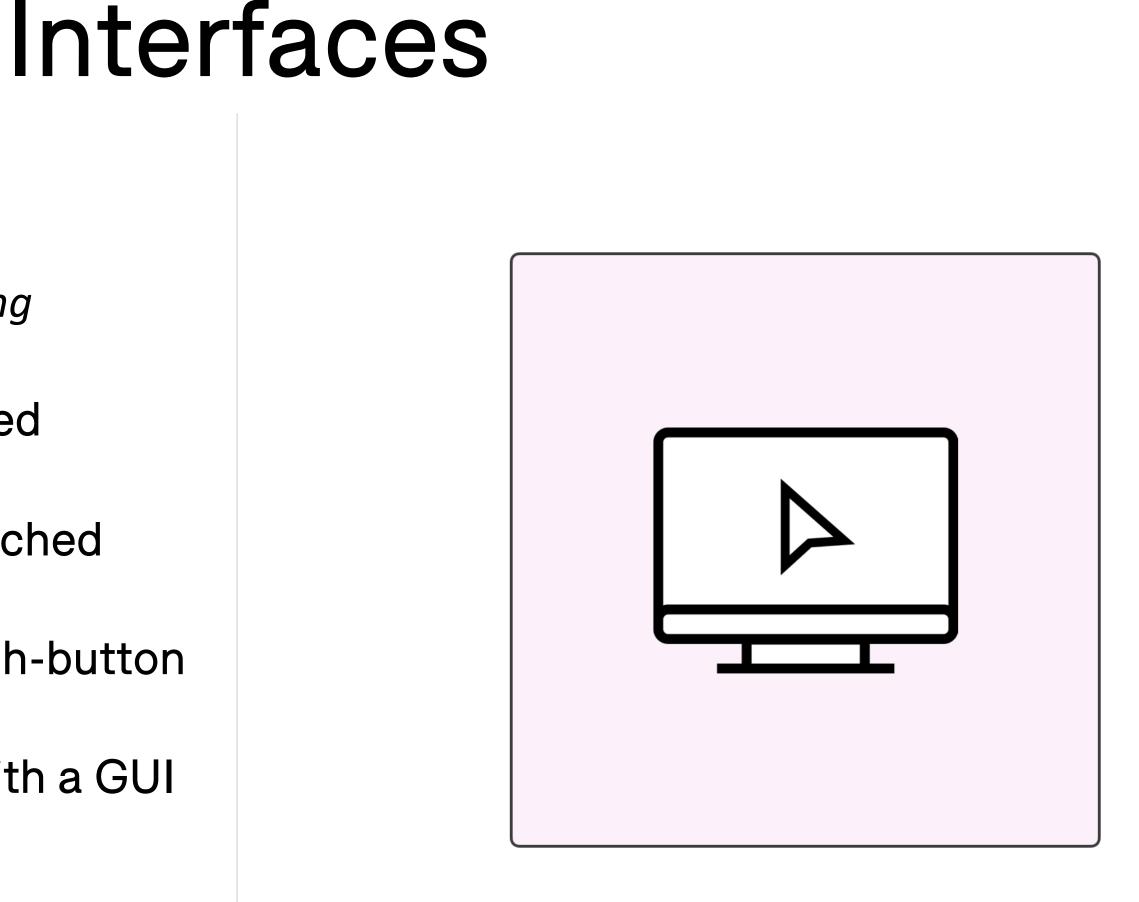
> 250K

Documents processed

What did we learn? (aka The Four "I"s)

QUESTION 3:

- Jupyter notebooks can't do everything
- Common LF types can be templatized
- Heavy 3rd party resources can be cached
- Standard analyses can be made push-button
- User experience can be improved with a GUI

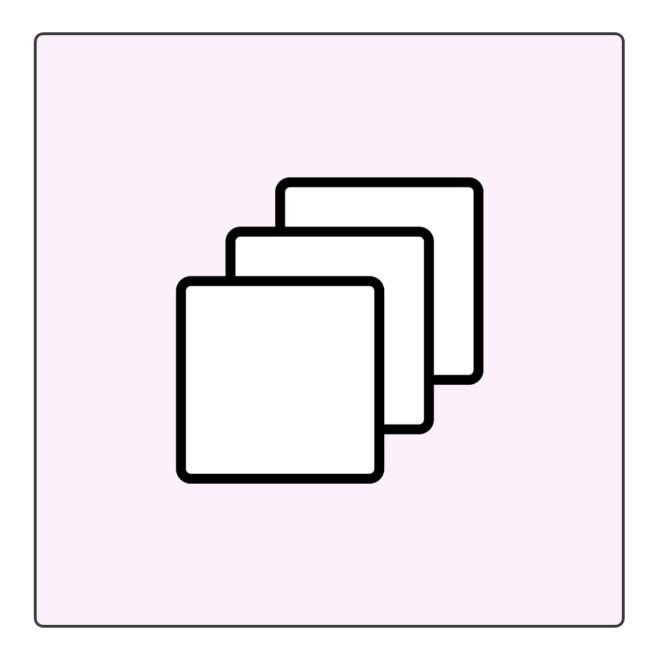


A standalone Python package is ultimately limited in what it can do

Infrastructure

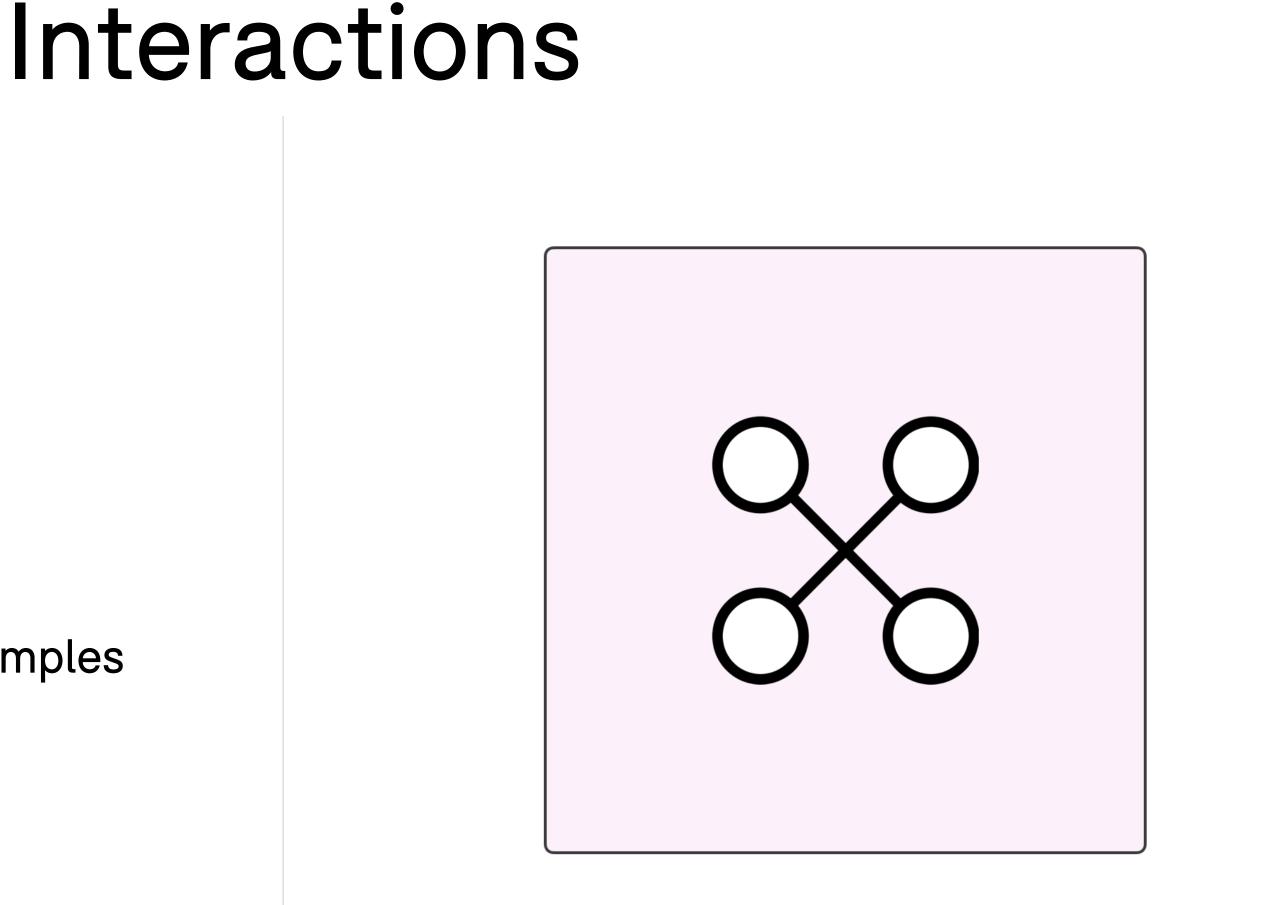
- Parallelization
- Logging
- User Profiles
- Integrations
- Dependencies

- Encryption
- Scalability
- Data Formats
- Versioning
- Etc.



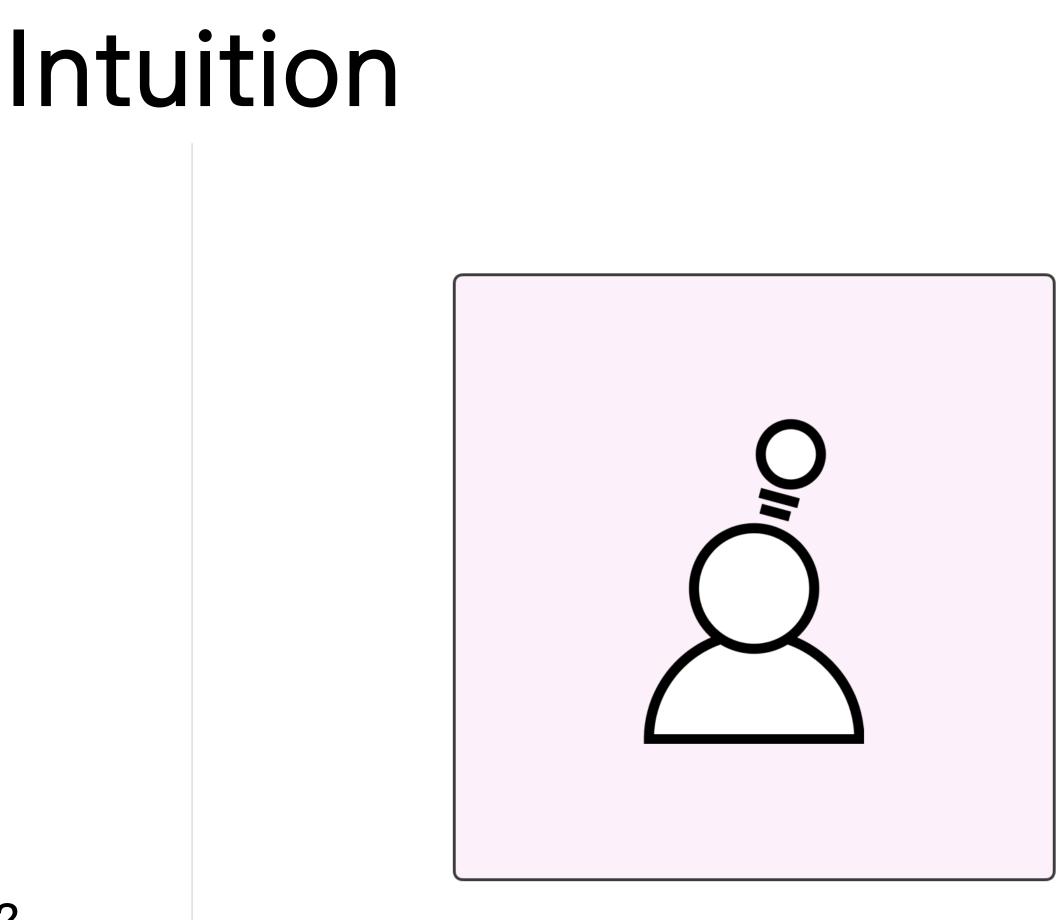
Software that enterprises depend upon needs enterprise-level support

- SME: labels, tags, comments
- DS: program, debug, connect
- Developer: API, SDK, CLI
- Business: dashboards, metrics, samples



Different user profiles require different views & interaction points

- How many LFs is enough?
- What LF should I write next?
- Should I focus on precision or recall?
- How do I address bias?
- Will more data help me?
- Is my model or my supervision lacking?

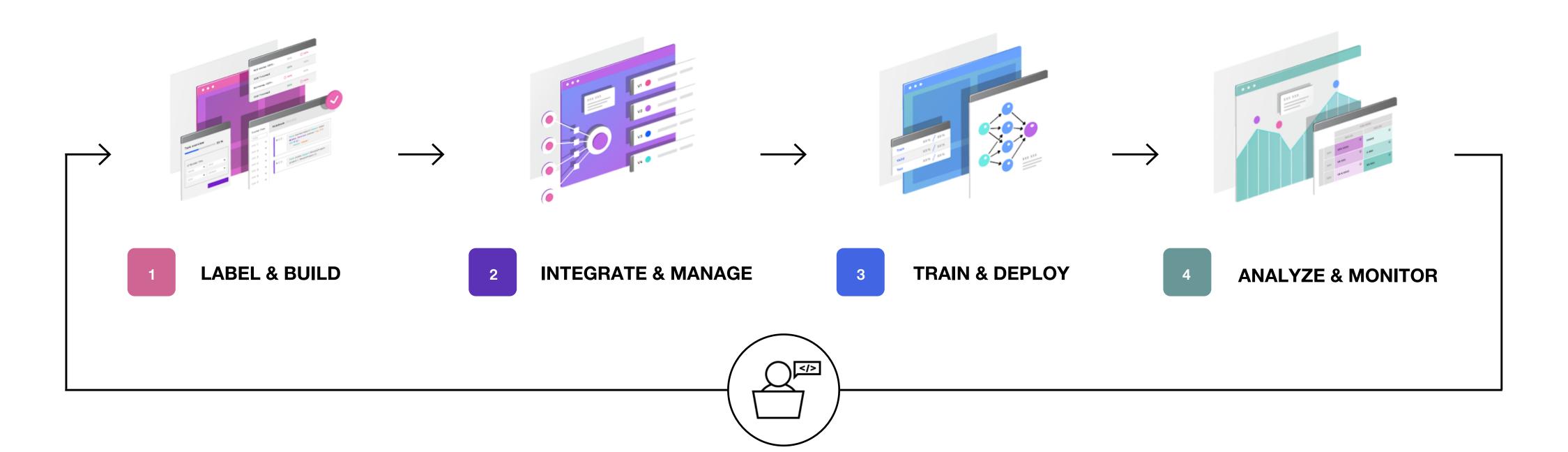


A new interface to ML comes with new **best practices**, tips, and tricks

Snorkel Flow is a platform for building Al applications

Powered by Snorkel technology

Snorkel Flow: The Radical New Way to Build Al Applications



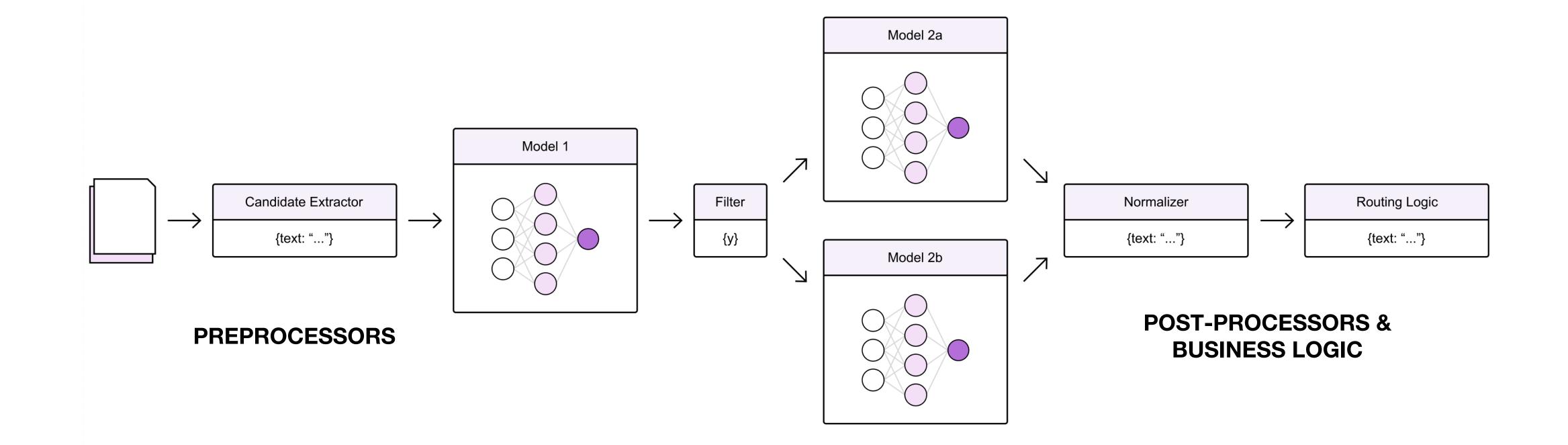
Snorkel Flow enables a faster, more practical, adaptive ML development process

Snorkel

4 Guiding Principles behind Snorkel Flow

Snorkel

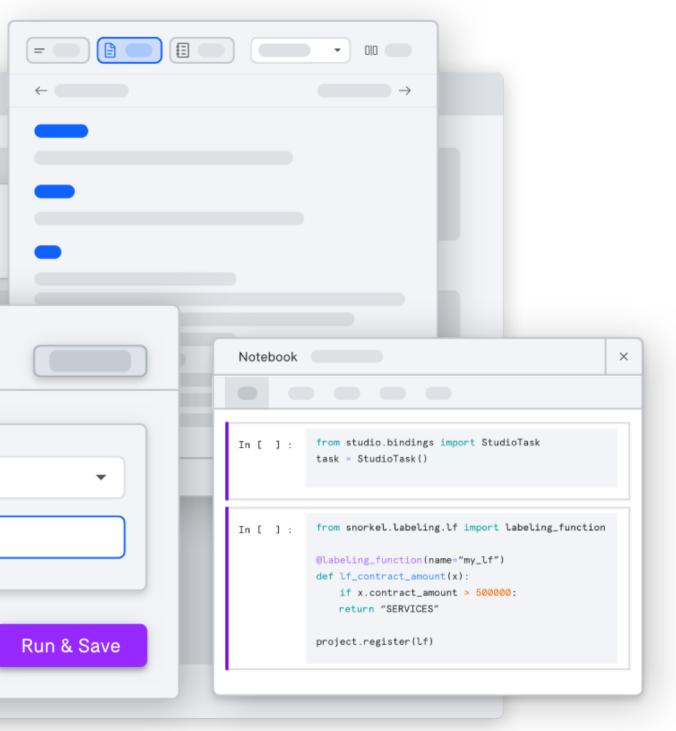
Applications > Models



Real-world applications chain **preprocessors**, **models**, and **control logic**

Task progress				
		-	~	
Labeling Fu	nction Builder			
If HEADE	R employment	•	CONTAINS	
Then label	EMPLOYMENT	•		

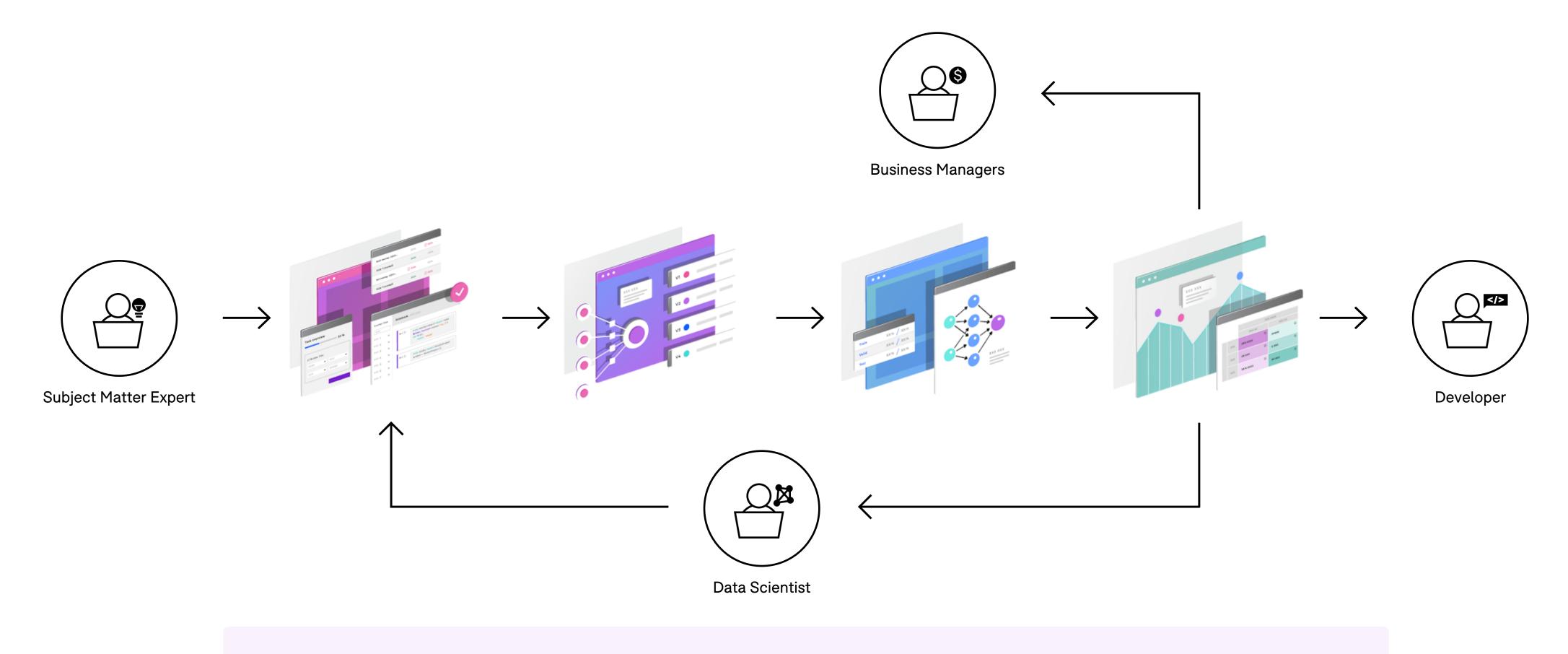
High & Low



High-level where you want it, low-level where you need it

Snorke

Collaborative Hub



Support the whole team responsible for driving ML success in an org

Iteration Wins

Drive up performance with systematic, iterative, integrated guidance

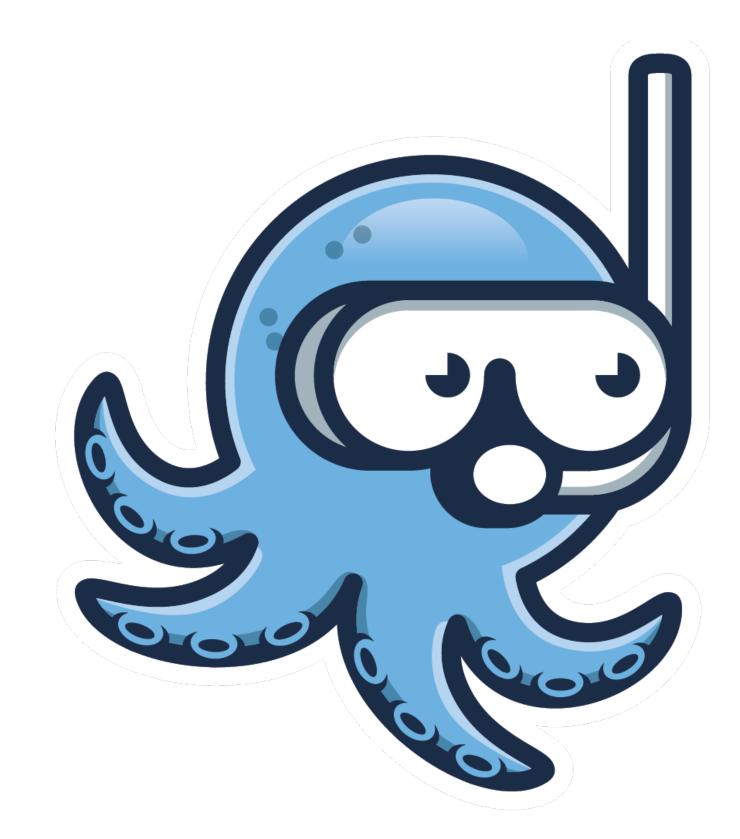
Expected		
LFs		
Model-1		
Model-1		
v/hide LFs		
	35 errors	
	Click to improve	
		{
		154 correct
		Model successfully
		generalizing

Request a Demo

https://snorkel.ai/demo

Or email at info@snorkel.ai

Talk to us on Twitter!



@SnorkelAl

Thank You

